

An Ultrawideband (UWB) Switched-Antenna-Array Radar Imaging System

G. L. Charvat, L. C. Kempel, E. J. Rothwell

Electromagnetics Research Group

Dept. of Electrical and Computer Engineering, Michigan State University

C. M. Coleman

Integrity Applications Incorporated

E. L. Mokole

Naval Research Laboratory

October 13, 2010

Thru-Slab S-Band Radar Imaging

- Rail SAR shown effective for thru-slab imaging
- 20 minute acquisition time does not support practical applications

G. L. Charvat, L. C. Kempel, E. J. Rothwell, C. Coleman, and E. L. Mokole, ``A through-dielectric radar imaging system," IEEE Transactions on Antennas and Propagation, vol. 58, Issue 8, pp. 2594-2603, August, 2010.

- Phased array reduces acquisition time from 20 min to < 2 seconds
- Proves thru-slab concept

Outline

- Radar Architecture
- Array
- Simulated Performance
- Implementation
- Measured vs. Simulated Results
- Point Target Imagery
- Measured Near Real-Time Imagery
 - free-space
 - thru-slab
- Summary

Radar Architecture

- FMCW, LFM chirp 1.926-4.096 GHz in 2.5-10 ms, 1 mw peak TX, PRF = 20 Hz (approx.)
- Range gate by band-limiting IF using crystal filters
 - Filters out air-wall boundary
 - Apply full dynamic range of digitizer
- TX/RX to fan-out switch matrices
 - One RX and TX element at any time

Array

- Subset of bistatic TX/RX element combinations acquired
 - 44 used, shown here
- Phase centers of bi-static combinations effectively forms a 8.5' long linear array with $\lambda/2$ element spacing at 3 GHz

MICHIGAN STATE
UNIVERSITY

COLLEGE OF

Element Position Errors

y-axis error

z-axis error

- Simulated point target at: (x,y,z) = (484.2, 113.3, 14.6) cm
- y phase center error from ideal = 3 mm max
- z phase center error from ideal = 1.5 mm max
- $\lambda/2 = 5$ cm => acceptable phase center errors from ideal

Simulated Sidelobe Performance

down-range sidelobes

cross-range sidelobes

- Simulated point target at: (x,y,z) = (484.2, 113.3, 14.6) cm
- Imaged using RMA SAR algorithm
 - Near-field beamforming, accounts for wavefront curvature
- 0.5 dB reduction in signal
- Range sidelobes nearly identical
- Close-in cross-range sidelobes reduced by 2 dB
 - slight element randomization

Implementation

- LFM, 1.926-4.069 GHz in 2.5-10 ms (adjustable)
- 1 mw peak TX power, 20 Hz PRF (software limited)
- 0.5 Hz imaging rate
- 8.75 ns, 17.5 ns, or 35 ns range gate

Simulated vs. Measured

simulated

measured

down-range sidelobes

cross-range sidelobes

elevated far-out cross-range sidelobes likely due to switch/cable coupling

MICHIGAN STATE UNIVERSITY

Point Target Imagery

6" carriage bolts

2" nails

1.25" nails

- Target scenes consisting of point targets
- Location of each point target shown
 - top row of 1.25" nails fading into noise

E N G I N E E R I N G

TO THE STATE OF TH

Near Real-Time Imagery

(free-space)

- 12 oz soda can
- 0.5 Hz imaging rate
- Location clearly shown

MICHIGAN STATE

Electromagnetics Research Group

Near Real-Time Imagery (thru-slab)

- 12 oz soda can thru a 10 cm thick solid concrete slab
- 0.5 Hz imaging rate
- Location clearly shown

Summary

- Near-field phased array as a method for reducing data acquisition time of thru-slab rail SAR
 - 20 min to < 2 seconds achieved
- Measurements agree with simulation
- Point target scenes imaged
- 0.5 Hz near real-time imagery shown
- Future work: video frame-rate imaging

